
Acta Cryst. (2008). A64, 601–612 doi:10.1107/S0108767308022149 601

research papers

Acta Crystallographica Section A

Foundations of
Crystallography

ISSN 0108-7673

Received 22 May 2008

Accepted 15 July 2008

2008 International Union of Crystallography

Printed in Singapore – all rights reserved

How to multiply a matrix of normal equations by an
arbitrary vector using FFT

Boris V. Strokopytov

V. A. Engelhardt Institute of Molecular Biology, 32 Vavilova Street, 119991 Moscow, Russian

Federation. Correspondence e-mail: strokop@gmail.com

This paper describes a novel algorithm for multiplying a matrix of normal

equations by an arbitrary real vector using the fast Fourier transform technique.

The algorithm allows full-matrix least-squares refinement of macromolecular

structures without explicit calculation of the normal matrix. The resulting

equations have been implemented in a new computer program, FMLSQ. A

preliminary version of the program has been tested on several protein

structures. The consequences for crystallographic refinement of macromolecules

are discussed in detail.

1. Notations

In what follows, vectors are represented by their coordinates

in columns and T stands for the transposition of vectors and

matrices. Matrices and vectors are shown in bold.

� Convolution sign

�k k Vector norm

al; bl Atomic form-factor scattering constants

Biso
i Isotropic atomic displacement factor

CPU Central processing unit

�xi Shift to x coordinate of ith atom

�yi Shift to y coordinate of ith atom

�zi Shift to z coordinate of ith atom

�Bi Shift to isotropic atomic displacement

parameter for ith atom

�Oi Shift to atomic occupancy of ith atom

�p Vector of parameter shifts:

ð�p1;�p2; . . . ;�p5NÞ
T
¼ ð�x1;�y1; . . . ;

�ONÞ
T

D Deorthogonalization three-by-three matrix

f ðpÞ Minimized function

f scatt
i Form factor of ith atom

Fc Calculated structure factor

FFT Fast Fourier transform

F
�1 Complex Hermitian Fourier transform

g Gradient of minimized function f ðpÞ

H Normal 5N-by-5N matrix

H1ðxi; xjÞ H1 normal matrix terms as defined by

Agarwal (1978)

½H�p�5ði�1Þþm Single entry vector of length 5N:

ð0; 0; . . . ; ½H�p�5ði�1Þþm; . . . ; 0ÞT

½H�p�x Scalar value equal to non-zero entry of

½H�p�5ði�1Þþ1

Ho Orthogonalized index h:

Ho

Ko

Lo

0
@

1
A ¼ DT

h

k

l

0
@

1
A

I Identity matrix

i; j Atom indices

M Size of normal matrix atom block; normally

M = 5

m Additional pointer to H�p vector entry;

m � M

� CPU time to evaluate one matrix–vector

product

n Number of iterations to solve one linear

system of equations

N Number of atoms in the asymmetric part of

the unit cell

Nsym Number of symmetry operators for true

space group

ngauss Number of Gaussians used to approximate

atomic scattering form factor

O Orthogonalization three-by-three matrix

’c Calculated phase in true space group

pi Vector of parameters for ith atom:

pi ¼ ðxi; yi; zi;Bi;OiÞ
T

q Vector of quasi-occupancies:

q ¼ ðq1; q2; . . . ; q5NÞ
T

qmod 5N vector of modified occupancies

�x Electron-density map

r Vector of position in real space

ri Vector of position of ith atom in real space:

ri ¼ ðxi; yi; ziÞ
T

�xx
5ði�1Þþ1 Weighted sum of H1ðxi; xjÞ or H2ðxi; xjÞ terms

defined by Agarwal (1978); during matrix–

vector multiplication 25 such sums must be

accumulated for H1 terms and the same

number of sums for H2 terms

s Vector of position in reciprocal space:

s ¼ ðh; k; lÞ

jsj2 4 sin2 �=�2, squared distance in reciprocal

space

wðsÞ Spherically symmetric weighting function

2. Introduction

Full-matrix least-squares refinement of macromolecules has

caused considerable interest during the past decade (Ten

Eyck, 2003; Cowtan & Ten Eyck, 2000). The advantages of the

least-squares method are known: fast convergence properties

of the algorithm and the possibility to estimate the accuracy of

refined parameters. Ten Eyck (1999) has also suggested that

the full-matrix technique could be used for proper estimation

of weighting schemes during the course of crystallographic

refinement.

Though the method of full-matrix least-squares has been

applied to refinement of small molecules for many years, it

seems that full-matrix refinement of macromolecular struc-

tures remains out of reach. The reasons are obvious. Appli-

cation of the full-matrix least-squares method requires

construction of the following system of linear equations (see

e.g. Ten Eyck, 1999):

H�p ¼ �g: ð1Þ

A straightforward approach suggests that to obtain the para-

meter shifts �p one needs to invert the matrix H:

�p ¼ �H�1g: ð2Þ

This technique is implemented in many programs that deal

with small molecules (Sheldrick, 2008). However, for proteins

and other macromolecules calculation and storage of large

matrices and especially their inversion may be prohibitively

expensive in terms of both storage and CPU time. A simple

calculation suggests that, for proteins larger than 2500 atoms

in size, matrices containing hundreds of millions of elements

must be constructed and inverted (assuming there are just four

refinable parameters per atom). The situation will become

even worse if we are going to refine coordinates and aniso-

tropic displacement parameters (nine refinable parameters

per atom) or deal with much larger structures. Therefore, most

of the modern macromolecular crystallographic refinement

programs like CNS (Brünger et al., 1998), REFMAC5

(Murshudov et al., 1997) and TNT (Tronrud, 1997) use a rather

rough approximation of the normal matrix (diagonal or block

diagonal). This drastically reduces the amount of storage

needed for the normal matrix and in addition its inversion

becomes almost trivial. However, convergence of these algo-

rithms may become slow at the end of the refinement and

error analysis remains a difficult problem.

Clearly, most macromolecular structures would benefit from

application of full-matrix least squares during the last stages of

refinement; model parameters are expected to have more

accurate values at the end of refinement (especially displace-

ment and occupancy parameters) compared with the values

obtained by the method of function minimization by conjugate

gradients, since interdependencies between model parameters

are taken into account. Analysis of the main diagonal of the

normal matrix inverse may be valuable for the estimation of

proper weighting schemes. Eigenvector analysis of the normal

matrix could be applied to find poorly or incorrectly defined

regions of protein structures (Cowtan & Ten Eyck, 2000).

Even a remote possibility of estimating standard uncertainties

for model parameters of larger proteins through the method of

least squares seems to be of considerable interest. However, it

is obvious that a completely different approach is necessary to

achieve these goals.

The most intriguing question to ask is whether it is possible,

at least in principle, to avoid calculation of the normal matrix

altogether. A positive answer comes from two works

published in the early 1950s, by Hestenes & Stiefel (1952) and

Lanczos (1952). These authors suggested a method (based on

conjugate gradients) for solution of linear systems Ax ¼ b

which does not require explicit matrix inversion. Since then

various modifications of this method have been developed. A

brief overview of these approaches to the solution of linear

systems was given by Urzhumtsev & Lunin (2001). For us, the

most important aspect of these algorithms is that one does not

need to calculate explicitly all n2 components of the matrix H

but only its product by a vector, i.e. just n values.

Application of the fast differentiation algorithm (FDA; Kim

et al., 1984) to crystallographic refinement has been performed

by Urzhumtsev & Lunin (2001) and Lunin & Urzhumtsev

(1985). On this basis, these authors have suggested that an

algorithm for normal matrix–vector multiplication must exist

and even predicted the numerical complexity of this opera-

tion. However, to the best of our knowledge, this algorithm

remained undiscovered for quite some time.

This paper describes a novel technique for calculation of the

normal matrix–vector product which avoids explicit calcula-

tion and storage of the normal matrix in computer memory. As

shown below, this technique allows full-matrix least-squares

refinement of proteins of virtually any size.

2.1. What was known: Agarwal’s result

The methods used to calculate the gradient vector and

matrix of normal equations have been given by Agarwal

(1978). We briefly review his method since it was instrumental

for the development of our matrix–vector product algorithm.

This will allow us to set up appropriate notation as well.

Let us give some basic formulas and definitions. In this

paper we are only concerned with the X-ray part of the normal

equations. The minimized function is

f ðpÞ ¼
P

s

wðsÞE2ðs; pÞ; ð3Þ

EðsÞ ¼ jFoðsÞj � jFcðs; pÞj: ð4Þ

If we define now

giðsÞ ¼ f scatt
i ðsÞ exp

�
�Biso

i jsj
2=4
�

ð5Þ

to simplify the expressions below, the calculated structure

factor (omitting vector p) may be written as

FcðsÞ ¼
PN
i¼1

OigiðsÞ expð2�isriÞ: ð6Þ

The expression for the gradient of the x coordinate for the ith

atom obtained by Agarwal is

research papers

602 Boris V. Strokopytov � Novel full-matrix technique Acta Cryst. (2008). A64, 601–612

@f ðpÞ

@xi

¼ 2
P

s

2�ih wðsÞEðsÞOi giðsÞ exp½i’cðsÞ� expð�2�isriÞ:

ð7Þ

This corresponds (with minor modifications) to equation (27)

from the original Agarwal (1978) paper. Similar expressions

were derived by Agarwal for other types of model parameters.

In addition, Agarwal was able to demonstrate that the normal

matrix could be represented by a sum of two matrices:

H ¼ H1 þH2: ð8Þ

The normal matrix (or, in other words, the matrix of second

derivatives after linearization) has the following form:

@2f

@pi@pj

¼ 2
X

s

wðsÞ

�
@jFcðsÞj

@pi

��
@jFcðsÞj

@pj

�T

; ð9Þ

where pi is the vector of parameters describing the ith atom.

The equivalent compact form has been given by Tronrud

(1999). Here we present another version of the compact form

with modifications that correspond directly to the result

obtained by Agarwal (1978) with some corrections by Lifchitz

(1986). Separating atomic occupancies from atomic scattering

factors1 we may write

@2f

@pi@pj

¼
X

s

wðsÞgiðsÞgjðsÞ

�

4�2h2OiOj 4�2hkOiOj 4�2hlOiOj ��ih
s2

2
OiOj 2�ihOi

4�2hkOiOj 4�2k2OiOj 4�2klOiOj ��ik
s2

2
OiOj 2�ikOi

4�2hlOiOj 4�2klOiOj 4�2l2OiOj ��il
s2

2
OiOj 2�ilOi

�ih
s2

2
OiOj �ik

s2

2
OiOj �il

s2

2
OiOj

s4

16
OiOj

�s2

4
Oi

�2�ihOj �2�ikOj �2�ilOj

�s2

4
Oj 1

0
BBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCA

� exp½2�isðri � rjÞ� �
X

s

wðsÞgiðsÞgjðsÞ exp½2i’cðsÞ�

�

4�2h2OiOj 4�2hkOiOj 4�2hlOiOj ��ih
s2

2
OiOj 2�ihOi

4�2hkOiOj 4�2k2OiOj 4�2klOiOj ��ik
s2

2
OiOj 2�ikOi

4�2hlOiOj 4�2klOiOj 4�2l2OiOj ��il
s2

2
OiOj 2�ilOi

��ih
s2

2
OiOj ��ik

s2

2
OiOj ��il

s2

2
OiOj

�s4

16
OiOj

s2

4
Oi

2�ihOj 2�ikOj 2�ilOj

s2

4
Oj �1

0
BBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCA

� exp½�2�isðri þ rjÞ�: ð10Þ

Equation (10) corresponds to one normal matrix block

defining the interaction of two atoms with indices i and j.

Inspection of equation (10) reveals that the normal matrix is

composed of 25 groups/sets of coefficients for H1 matrix terms

and the same number of sets for H2 terms. We are ready now

to derive formulae for the matrix–vector product.

3. Matrix–vector product derivation

Following the notation of Agarwal for the normal matrix

terms, multiplication of the normal matrix H by a column

vector �p requires accumulation of the following sums:

H�p ¼
P

l

Hkl�pl ¼
P

l

H1kl�pl þ
P

l

H2kl�pl; ð11Þ

where k ¼ 1; 2; . . . ; 5N and l ¼ 1; 2; . . . ; 5N.

To start the derivation let us first consider the H1ðxi; xjÞ

normal matrix term corresponding to the matrix element (1,1)

in the first (upper) matrix in equation (10):

H1ðxi; xjÞ¼
P

s

wðsÞ 4�2h2OiOjgiðsÞgjðsÞ exp½2�isðri � rjÞ�; ð12Þ

where i and j are atom indices, i; j ¼ 1; 2; . . . ;N.

How frequently can we find those H1ðxi; xjÞ terms in the H1

part of the normal matrix? Inspection of the entries in equa-

tion (10) suggests that there are N2 entries of this type in N

rows of the 5N-by-5N H1 matrix. They are positioned at

columns with indices 5ðj� 1Þ þ 1 and rows with indices

5ði� 1Þ þ 1. Thus only N (out of 5N) components of �p in

each row with indices 5ði� 1Þ þ 1 will participate in the

following summation:2

�
H1ðxi;xjÞ

5ði�1Þþ1 ¼
PN
j¼1

H1ðxi; xjÞ�p5ðj�1Þþ1: ð13Þ

To simplify the notation we shall replace the upper index

H1ðxi; xjÞ with xx, and the above equation reads now as

�xx
5ði�1Þþ1 ¼

PN
j¼1

H1ðxi; xjÞ�p5ðj�1Þþ1: ð14Þ

The lower index in �xx
5ði�1Þþ1 means that this summation is valid

only for rows with indices k ¼ 1; 6; . . . ; 5ðN � 1Þ þ 1.

Obviously, similar expressions can be written for each of the

25 terms in equation (10). For summation of H1ðyi; xjÞ terms

we will use the upper index yx etc. The same type of indexing

will be used for H2 terms. In total 25 various upper indices will

be used, which can be conveniently represented by the

following symbolic matrix:

xx xy xz xB xO

yx yy yz yB yO

zx zy zz zB zO

Bx By Bz BB BO

Ox Oy Oz OB OO

0
BBBB@

1
CCCCA: ð15Þ

It is clear that matrix (15) has direct correspondence to

equation (10). Decomposing the H1�p product into five equal

sets (according to the size of atomic block) we may write

½H1�p�5ði�1Þþ1 ¼ �xx
5ði�1Þþ1 þ�xy

5ði�1Þþ1 þ�xz
5ði�1Þþ1

þ�xB
5ði�1Þþ1 þ�xO

5ði�1Þþ1; ð16Þ

Acta Cryst. (2008). A64, 601–612 Boris V. Strokopytov � Novel full-matrix technique 603

research papers

1 Careful tracking of atomic occupancies is important for matrix–vector
product derivation.

2 In practice the situation is a bit more complicated since not all atomic blocks
may be equal in size and each atom may have a different number of refinable
parameters. This problem is addressed at the programming level by creating
appropriate pointers to normal matrix atomic blocks or vector entries. Here,
for simplicity, we assume that all atoms have the same number of refinable
parameters and all atomic blocks defined by equation (10) are equal.

½H1�p�5ði�1Þþ2 ¼ �yx
5ði�1Þþ2 þ�yy

5ði�1Þþ2 þ�yz
5ði�1Þþ2

þ�yB
5ði�1Þþ2 þ�yO

5ði�1Þþ2; ð17Þ

½H1�p�5ði�1Þþ3 ¼ �zx
5ði�1Þþ3 þ�zy

5ði�1Þþ3 þ�zz
5ði�1Þþ3

þ�zB
5ði�1Þþ3 þ�zO

5ði�1Þþ3; ð18Þ

½H1�p�5ði�1Þþ4 ¼ �Bx
5ði�1Þþ4 þ�By

5ði�1Þþ4 þ�Bz
5ði�1Þþ4

þ�BB
5ði�1Þþ4 þ�BO

5ði�1Þþ4; ð19Þ

½H1�p�5i ¼ �Ox
5i þ�Oy

5i þ�Oz
5i þ�OB

5i þ�OO
5i : ð20Þ

Substituting H2 for H1, exactly the same equations can be

written in terms of H2. To get the full H�p product we need to

sum the H1 and H2 normal matrix terms:

½H�p�5ði�1Þþm ¼ ½H1�p�5ði�1Þþm þ ½H2�p�5ði�1Þþm ð21Þ

for i ¼ 1; 2 . . . ;N and m ¼ 1; 2; . . . ; 5. Thus we have a general

picture of further calculations. Let us go back to the details.

Explicit multiplication for equation (14) using equation (12)

gives, in space group P1,

�xx
5ði�1Þþ1 ¼

PN
j¼1

�p5ðj�1Þþ1

P
s

wðsÞ 4�2h2OiOjgiðsÞgjðsÞ

� exp½2�isðri � rjÞ�; ð22Þ

where i ¼ 1; 2; . . . ;N. Changing the order of the summation

(to separate items that do not depend on index j), splitting the

exponent into two parts and rearranging some terms one can

easily obtain

�xx
5ði�1Þþ1 ¼

P
s

OigiðsÞ4�
2h2wðsÞ expð2�isriÞ

�
PN
j¼1

�px
5ðj�1Þþ1OjgjðsÞ expð�2�isrjÞ: ð23Þ

Summation of all matrix entries (weighted by vector �p

components), for example, for the first row of matrix H1,

requires a split of the vector �p into five equal sets of

components:3

�p ¼

�px
5ðj�1Þþ1;

�p
y
5ðj�1Þþ2;

�pz
5ðj�1Þþ3; j ¼ 1; 2; . . . ;N:

�pB
5ðj�1Þþ4;

�pO
5j

8>>>>>><
>>>>>>:

ð24Þ

The sets defined by equation (24) can be applied during

multiplication for all other matrix rows. Summation for the

rows with indices k ¼ 1; 6; . . . ; 5ðN � 1Þ þ 1 for the H1 matrix

can now be written using equation (10) as a look-up table.

Applying the transformations we used to derive equation (23)

to each set of coefficients and summing the H1�p and H2�p

products according to equation (21), it can be shown that

½H�p�5ði�1Þþ1 ¼
P

s

OigiðsÞ 4�
2h2wðsÞExðsÞ expð�2�isriÞ

þ
P

s

Oigi sð Þ 4�2hkw sð ÞEy sð Þ expð�2�isriÞ

þ
P

s

OigiðsÞ 4�
2hlwðsÞEzðsÞ expð�2�isriÞ

þ
P

s

OigiðsÞ�ihðs2=2ÞwðsÞEBðsÞ expð�2�isriÞ

�
P

s

OigiðsÞ 2�ihwðsÞEOðsÞ expð�2�isriÞ; ð25Þ

½H�p�5ði�1Þþ2 ¼
P

s

Oigi sð Þ 4�2hkw sð ÞEx sð Þ expð�2�isriÞ

þ
P

s

Oigi sð Þ 4�2k2w sð ÞEy sð Þ expð�2�isriÞ

þ
P

s

Oigi sð Þ 4�2klw sð ÞEz sð Þ expð�2�isriÞ

þ
P

s

OigiðsÞ�ikðs2=2ÞwðsÞEBðsÞ expð�2�isriÞ

�
P

s

OigiðsÞ 2�ikwðsÞEOðsÞ expð�2�isriÞ; ð26Þ

½H�p�5ði�1Þþ3 ¼
P

s

OigiðsÞ 4�
2hlwðsÞExðsÞ expð�2�isriÞ

þ
P

s

OigiðsÞ 4�
2klwðsÞEyðsÞ expð�2�isriÞ

þ
P

s

OigiðsÞ 4�
2l2wðsÞEzðsÞ expð�2�isriÞ

þ
P

s

OigiðsÞ�ilðs2=2ÞwðsÞEBðsÞ expð�2�isriÞ

�
P

s

OigiðsÞ 2�ilwðsÞEOðsÞ expð�2�isriÞ; ð27Þ

½H�p�5ði�1Þþ4 ¼ �
P

s

OigiðsÞ�ihðs2=2ÞwðsÞExðsÞ expð�2�isriÞ

�
P

s

OigiðsÞ�ikðs2=2ÞwðsÞEyðsÞ expð�2�isriÞ

�
P

s

OigiðsÞ�ilðs2=2ÞwðsÞEzðsÞ expð�2�isriÞ

þ
P

s

OigiðsÞðs
4=16ÞwðsÞEBðsÞ expð�2�isriÞ

�
P

s

OigiðsÞðs
2=4ÞwðsÞEOðsÞ expð�2�isriÞ; ð28Þ

½H�p�5i ¼
P

s

giðsÞ2�ihwðsÞExðsÞ expð�2�isriÞ

þ
P

s

giðsÞ2�ikwðsÞEyðsÞ expð�2�isriÞ

þ
P

s

giðsÞ2�ilwðsÞEzðsÞ expð�2�isriÞ

�
P

s

giðsÞðs
2=4ÞwðsÞEBðsÞ expð�2�isriÞ

þ
P

s

giðsÞwðsÞE
OðsÞ expð�2�isriÞ; ð29Þ

where

ExðsÞ ¼ Fx
c ðsÞ � Fx�

c ðsÞ exp½2i’cðsÞ�; ð30Þ

Ey
ðsÞ ¼ Fy

c ðsÞ � Fy�
c ðsÞ exp½2i’cðsÞ�; ð31Þ

Ez
ðsÞ ¼ Fz

c ðsÞ � Fz�
c ðsÞ exp½2i’cðsÞ�; ð32Þ

research papers

604 Boris V. Strokopytov � Novel full-matrix technique Acta Cryst. (2008). A64, 601–612

3 Upper indices x; y; z;B;O have been introduced to reflect the fact that
�px

5ðj�1Þþ1 = �xj, �p
y
5ðj�1Þþ2 = �yj etc.

EBðsÞ ¼ FB
c ðsÞ þ FB�

c ðsÞ exp½2i’cðsÞ�; ð33Þ

EO
ðsÞ ¼ FO

c ðsÞ þ FO�
c ðsÞ exp½2i’cðsÞ�: ð34Þ

The Fc values are calculated according to

Fx�
c ðsÞ ¼

PN
j¼1

qx
5ðj�1Þþ1Oj gjðsÞ expð�2�isrjÞ

¼
PN
j¼1

�px
5ðj�1Þþ1Oj gjðsÞ expð�2�isrjÞ; ð35Þ

Fy�
c ðsÞ ¼

PN
j¼1

q
y
5ðj�1Þþ2Oj gjðsÞ expð�2�isrjÞ

¼
PN
j¼1

�p
y
5ðj�1Þþ2Oj gjðsÞ expð�2�isrjÞ; ð36Þ

Fz�
c ðsÞ ¼

PN
j¼1

qz
5ðj�1Þþ3Oj gjðsÞ expð�2�isrjÞ

¼
PN
j¼1

�pz
5ðj�1Þþ3Oj gjðsÞ expð�2�isrjÞ; ð37Þ

FB�
c ðsÞ ¼

PN
j¼1

qB
5ðj�1Þþ4Oj gjðsÞ expð�2�isrjÞ

¼
PN
j¼1

�pB
5ðj�1Þþ4Oj gjðsÞ expð�2�isrjÞ; ð38Þ

FO�
c ðsÞ ¼

PN
j¼1

qO
5jgjðsÞ expð�2�isrjÞ

¼
PN
j¼1

�pO
5jgjðsÞ expð�2�isrjÞ: ð39Þ

Therefore, five sets of modified occupancies must be formed to

calculate the corresponding Fc parameters:

qmod ¼

qx
5ðj�1Þþ1Oj

q
y
5ðj�1Þþ2Oj

qz
5ðj�1Þþ3Oj j ¼ 1; 2; . . . ;N

qB
5ðj�1Þþ4Oj

qO
5j

8>>>>>><
>>>>>>:

ð40Þ

and

�p � q ¼ ðq1; q2; . . . ; q5NÞ
T: ð41Þ

During the simplification process we assumed that Friedel’s

law holds and the following two important identities have

been used:P
s

F�c ðsÞ expð2�isriÞ ¼
P

s

FcðsÞ expð�2�isriÞ ð42Þ

and P
s

iF�c ðsÞ expð2�isriÞ ¼ �
P

s

iFcðsÞ expð�2�isriÞ: ð43Þ

All single entry vectors ½H�p�5ði�1Þþm can be merged readily

into the final H�p product:

H�p ¼
P5

m¼1

PN
i¼1

½H�p�5ði�1Þþm: ð44Þ

Obviously, vector H�p has no empty entries now.

This completes the list of all the terms necessary to calculate

the desired matrix–vector product in the P1 space group.

A more detailed derivation of the matrix–vector product

can be found in the supplementary material4 for this paper.

3.1. Using FFT

To see how the FFT algorithm could be applied to calcu-

lation of the matrix–vector product let us first consider as an

example the first sum in equation (25):P
s

OigiðsÞ 4�
2h2wðsÞExðsÞ expð�2�isriÞ: ð45Þ

This expression can be viewed as a product of two functions

and according to the convolution theorem can be evaluated

using convolution of the map calculated with the following

coefficients:

�xxðrÞ ¼
P

s

4�2h2wðsÞExðsÞ expð�2�isrÞ; ð46Þ

with the Fourier transform5 of OigiðsÞ expð2�isriÞ:

�atom
i ðr� riÞ ¼ Oi

Xngauss

l

al

4�

Biso
i þ bl

!3=2

exp

�

4�2r2

Biso
i þ bl

!
; ð47Þ

where r2 ¼ jjr� rijj
2
2 in an orthogonal coordinate frame. Fx

c ðsÞ

are calculated according to equation (35). ExðsÞ are given by

equation (30).

Inspection of equation (25) suggests that the evaluation of

the whole product for rows with indices 5ði� 1Þ þ 1 needs a

more complex map, which would combine the following five

sets of coefficients:

�xðrÞ ¼ �xxðrÞ þ �xyðrÞ þ �xzðrÞ þ �xBðrÞ þ �xOðrÞ

¼
P

s

4�2h2wðsÞExðsÞ expð�2�isrÞ

þ
P

s

4�2hkwðsÞEyðsÞ expð�2�isrÞ

þ
P

s

4�2hlwðsÞEzðsÞ expð�2�isrÞ

þ
P

s

�ihðs2=2ÞwðsÞEBðsÞ expð�2�isrÞ

�
P

s

2�ihwðsÞEOðsÞ expð�2�isrÞ: ð48Þ

During the next step this combined map has to be convoluted

with the atomic densities of all atoms producing a partial

matrix–vector product for rows 5ði� 1Þ þ 1, i ¼ 1; 2; . . . ;N.

The four other maps must be calculated in order to

complete the evaluation of the full matrix–vector product:

Acta Cryst. (2008). A64, 601–612 Boris V. Strokopytov � Novel full-matrix technique 605

research papers

4 Supplementary material for this paper is available from the IUCr electronic
archives (Reference: ZM5045). Services for accessing these archives are
described at the back of the journal.
5 When calculating the convolution with the map defined by equation (52) the
Oi term has to be omitted. See also equations (29) and (57).

�yðrÞ ¼ �yxðrÞ þ �yyðrÞ þ �yzðrÞ þ �yBðrÞ þ �yOðrÞ

¼
P

s

4�2hkwðsÞExðsÞ expð�2�isrÞ

þ
P

s

4�2k2wðsÞEyðsÞ expð�2�isrÞ

þ
P

s

4�2klwðsÞEzðsÞ expð�2�isrÞ

þ
P

s

�ikðs2=2ÞwðsÞEBðsÞ expð�2�isrÞ

�
P

s

2�ikwðsÞEOðsÞ expð�2�isrÞ; ð49Þ

�zðrÞ ¼ �zxðrÞ þ �zyðrÞ þ �zzðrÞ þ �zBðrÞ þ �zOðrÞ

¼
P

s

4�2hlwðsÞExðsÞ expð�2�isrÞ

þ
P

s

4�2klwðsÞEyðsÞ expð�2�isrÞ

þ
P

s

4�2l2wðsÞEzðsÞ expð�2�isrÞ

þ
P

s

�ilðs2=2ÞwðsÞEBðsÞ expð�2�isrÞ

�
P

s

2�ilwðsÞEOðsÞ expð�2�isrÞ; ð50Þ

�BðrÞ ¼ �BxðrÞ þ �ByðrÞ þ �BzðrÞ þ �BBðrÞ þ �BOðrÞ

¼ �
P

s

�ihðs2=2ÞwðsÞExðsÞ expð�2�isrÞ

�
P

s

�ikðs2=2ÞwðsÞEyðsÞ expð�2�isrÞ

�
P

s

�ilðs2=2ÞwðsÞEzðsÞ expð�2�isrÞ

þ
P

s

ðs4=16ÞwðsÞEBðsÞ expð�2�isrÞ

�
P

s

ðs2=4ÞwðsÞEOðsÞ expð�2�isrÞ; ð51Þ

�OðrÞ ¼ �OxðrÞ þ �OyðrÞ þ �OzðrÞ þ �OBðrÞ þ �OOðrÞ

¼
P

s

2�ihwðsÞExðsÞ expð�2�isrÞ

þ
P

s

2�ikwðsÞEyðsÞ expð�2�isrÞ

þ
P

s

2�ilwðsÞEzðsÞ expð�2�isrÞ

�
P

s

ðs2=4ÞwðsÞEBðsÞ expð�2�isrÞ

þ
P

s

wðsÞEOðsÞ expð�2�isrÞ: ð52Þ

The Fc values (and thus Ex;Ey etc.) can be generated by means

of conventional FFT methods through density generation

routines, which have to be modified somewhat to allow arbi-

trarily large or small occupancies on input. Note that the

quasi-occupancies q defined by equation (41) may assume

negative values.

In total, 25 sets of coefficients have to be calculated and

appropriately combined to produce the five different maps

defined by equations (48)–(52). Convolution of each map with

the atomic densities of N atoms will produce 5N single entry

vectors ½H�p�5ði�1Þþm of length 5N. Omitting some constant

multipliers we may write out the final result:

½H�p�5ði�1Þþ1 ¼ �
atom
i ðr� riÞ � �xðrÞ

¼
P

r

�atom
i ðr� riÞ�xðrÞ; ð53Þ

½H�p�5ði�1Þþ2 ¼ �
atom
i ðr� riÞ � �yðrÞ

¼
P

r

�atom
i ðr� riÞ�yðrÞ; ð54Þ

½H�p�5ði�1Þþ3 ¼ �
atom
i ðr� riÞ � �zðrÞ

¼
P

r

�atom
i ðr� riÞ�zðrÞ; ð55Þ

½H�p�5ði�1Þþ4 ¼ �
atom
i ðr� riÞ � �BðrÞ

¼
P

r

�atom
i ðr� riÞ�BðrÞ; ð56Þ

½H�p�5i ¼ ð1=OiÞ�
atom
i ðr� riÞ � �OðrÞ

¼ ð1=OiÞ
P

r

�atom
i ðr� riÞ�OðrÞ: ð57Þ

In the final step the 5N single entry vectors ½H�p�5ði�1Þþm can

be merged into one vector of length 5N using equation (44),

which corresponds to the desired H�p product.

The symmetries of the maps defined by equations (48)–(52)

are unknown. Therefore it is advised to calculate coefficients

for these maps in the P1 space group, noting that the reci-

procal-space operations are relatively cheap in terms of CPU

time. Further research in this area is required.

In Appendix A we provide some information about the

calculation of the matrix–vector product in arbitrary space

groups.

Derivation of the matrix–vector product can be achieved

using several other approaches. Appendix B contains infor-

mation about other possibilities to derive the full normal

matrix–vector product.

Several other types of vector–matrix products can be easily

calculated via FFT (see Appendix C).

3.2. Summarizing steps to calculate the normal matrix–
vector product

The following steps have to be carried out to calculate the

matrix–vector product H�p:

(1) Generate five density maps for the model structure

using the five sets of occupancies defined by equation (40).

(2) Evaluate five sets of structure factors defined by equa-

tion (35)–(39) using real FFT.

(3) Calculate coefficients for five maps in the P1 space

group, equations (48)–(52).

(4) Apply symmetry operators in reciprocal space to obtain

the matrix–vector product in the true space group (see

Appendix A).

(5) Use complex Hermitian FFT to calculate the maps given

by equations (48)–(52).

(6) Perform the convolution step for the five maps defined

by equations (53)–(57).

(7) Assemble the final matrix–vector product [equation

(44)].

research papers

606 Boris V. Strokopytov � Novel full-matrix technique Acta Cryst. (2008). A64, 601–612

A nice feature of this algorithm is that the most time-

consuming steps – density generation and the convolution

steps – may be easily parallelized (and that might be important

if several CPUs are available). 80–90% of the CPU time is

spent during the real-space operations.

3.3. Limitations of the method and the normal matrix
inversion problem

The largest limitation of the method resides in its very

nature. Individual matrix elements are not explicitly acces-

sible. For example, calculation of all matrix elements requires

5N implicit multiplications using

Hj ¼ Hej; ð58Þ

where ej ¼ ð0; 0; . . . ; 1; . . . ; 0ÞT, 1 is in the jth position and Hj

denotes the jth column of the H matrix. This was pointed out

by Urzhumtsev & Lunin (2001).

It could be added to this observation that explicit inversion

of the whole normal matrix for larger proteins remains diffi-

cult (though formally possible). A straightforward approach

which avoids direct calculation of the normal matrix using

equation (58) suggests that we need to solve 5N linear systems

to obtain the inverted matrix H�1:

HX ¼ I; ð59Þ

which is rather expensive in terms of CPU time, even for

protein structures of medium size. (When all systems have

been solved we obviously have X ¼ H�1.) The overall time

Tinv for implicit matrix inversion using this method can be

estimated as

Tinv ’ 5N�n; ð60Þ

where � is the time required to evaluate one matrix–vector

product and n is the average number of iterations required to

solve one linear system. However, assuming that we can

obtain a solution of the single linear system in a fixed number

of iterations,6 Tinv will scale as OðN2Þ since � is roughly

proportional to N. Note that for very large proteins we may

choose to calculate selected columns only7 (and hence corre-

sponding diagonal elements) of the inverse matrix H�1 using

this method.

For smaller proteins (around or less than 3000 atoms in the

asymmetric part of the unit cell), another approach to normal

matrix inversion is possible (if one really needs to obtain all

diagonal elements of the matrix inverse). Equation (58) could

be used to calculate matrix H explicitly and, as pointed out by

an anonymous referee, we may use an efficient implementa-

tion of the LAPACK library (Anderson et al., 1999) to obtain

matrix H�1 (e.g. Intel MKL library). This approach might be

more efficient than solution of 5N linear systems since the

implicit normal matrix–vector multiplication is a relatively

slow operation. However, comparison of both methods for

smaller structures goes beyond the scope of this article.

Clearly, for larger macromolecules the size of matrix H grows

pretty quickly, and it may be too big to fit into computer

memory at a certain point. Therefore we believe that iterative

methods based on the matrix–vector algorithm are the only

viable alternative for large proteins (e.g. 10 000 atoms or

more).

In subsequent papers the problem of matrix inversion will

be considered in more detail because of its importance for the

calculation of s.u. values of model parameters. Note that

explicit normal matrix inversion is needed for error analysis

only and should be performed only once at the end of crys-

tallographic refinement.

Limitations mentioned by Tronrud (1999) will also apply to

the matrix–vector product algorithm.

3.4. Advantages

On a positive note, one cycle of least-squares refinement

will require the CPU time Tlsq 	 Tinv:

Tlsq ’ �n: ð61Þ

Assuming that one matrix–vector product requires one minute

of CPU time for a medium-sized protein and the number of

iterations is about 30, it follows that one cycle of full-matrix

refinement will take just about half an hour, which is quite

acceptable in practice (see x4). Preconditioning of the normal

matrix may be used to reduce the number of iterations when

solving a linear system. This will speed up convergence and in

addition improves the accuracy of the solution. Normally

n	 5N, even in those cases when one uses just the simplest

diagonal preconditioner. A brief overview of the theory of

preconditioners is given in Appendix D.

No explicit storage of the normal matrix is required.

However, memory requirements are still relatively high, since

up to five electron-density maps have to be held in computer

memory simultaneously. (It is possible to use one map only,

gradually accumulating the matrix–vector product, but this

will slow down the matrix–vector product calculations

considerably.)

The most important fact is that virtually all linear algebra

algorithms remain accessible and can be easily implemented

using the matrix–vector product algorithm.

3.5. Some technical details of FMLSQ

The above equations have been implemented in a new

computer program, FMLSQ (full-matrix least-squares) using

the Fortran95 language. For speedy calculation of the matrix–

vector products the program was arranged to keep all five

maps in computer memory. To minimize the required memory

and, on the other hand, produce accurate results we rely on

the method developed by Navaza (2002).

The routines for the density generation and convolution

step were written from scratch to handle up to five maps

simultaneously and allow arbitrary values for occupancies on

input, which is essential for correct functioning of the algo-

Acta Cryst. (2008). A64, 601–612 Boris V. Strokopytov � Novel full-matrix technique 607

research papers

6 Actually the dependence between the number of iterations and the matrix
size is a complex matter. The speed of convergence and the number of
iterations depend on the spectrum of the normal matrix and the choice of
preconditioner. See Appendix D.
7 Solving the linear system Hx ¼ ej for each desired parameter with index j.

rithm. Our FFT engine of choice is FFTW (Frigo & Johnson,

2005; Johnson & Frigo, 2007).

The excellent SYMMLQ routine was included as a part of

the FMLSQ algorithm for implicit solution of linear systems of

equations. SYMMLQ is intended for sparse matrices (but

performs well with dense) and requires a user-supplied routine

for evaluation of matrix–vector products. See Paige & Saun-

ders (1975) for details.

All computation including FFT was performed in double

precision since in many cases one has to deal with very ill-

conditioned normal matrices (Cowtan & Ten Eyck, 2000). A

linear search routine based on function approximation by a

cubic polynomial has been used for parameter shift scaling

(Press et al., 1992). The appropriate CCP4 libraries have been

used for input/output operations (Collaborative Computa-

tional Project, Number 4, 1994).

We have not yet included any geometry terms in the mini-

mized function. The sparse matrix of second derivatives for

the geometry terms can be calculated explicitly using

conventional methods (Hendrickson & Konnert, 1980). We

obtain the following linear system:

Htotal�p ¼ HX-ray�pþ kHgeom�p ¼ �ðgX-ray þ kggeomÞ;

ð62Þ

where k is a suitably chosen weighting factor. The product

Hgeom�p is calculated explicitly using standard linear algebra

methods, while the product HX-ray�p is evaluated implicitly

using the methods described in this paper. Geometry

restraints act as additional observations and are known to

stabilize crystallographic refinement (Cowtan & Ten Eyck,

2000) provided that proper weighting schemes are used.

Programming of the geometry restraints is in progress.

4. Results and discussion

The FMLSQ algorithm has been tested on several small

artificial three-atom structures in various space groups. The

normal matrix has been calculated using two methods – via the

conventional (one-plane-all-atoms) approach (Hendrickson &

Konnert, 1980) and using the matrix–vector product algorithm

described above. In the latter case equation (58) has been used

to gain access to matrix elements and analyze the accuracy of

the results. It was established that suitable larger integration

radii allow one to achieve very accurate results, so that

matrices obtained by the conventional approach do not

deviate much from matrices obtained by FFT through the

matrix–vector product algorithm. If we define hconv
ij and hFFT

ij as

matrix elements calculated using the conventional approach

and matrix elements calculated using our FFT algorithm,

respectively, then the ratios hconv
ij =hFFT

ij do not deviate from

unity by more than 10�7–10�8 in most cases. The tests using

equation (58) revealed also that the symmetry of the FFT

matrices with respect to the main diagonal was preserved at

the levels close to the machine precision.

All calculations have been carried out on a single Intel

2.8 GHz Xeon processor using the Intel Fortran compiler.

4.1. Testing the program on smaller structures

Three structures from the Protein Data Bank (PDB;

Berman et al., 2002) and two in-house data sets have

been chosen for numerical tests. The PDB structures are

�-conotoxin PnIB (PDB code 1akg), hen egg white lysozyme

(PDB code 1v7s) and �-galactosidase (PDB codes 1bgl and

1bgm). Structure factors and refined models of ribonuclease A

and laccase (Polyakov, 2008) have been kindly provided for

these tests by Dr Kostya Polyakov.

Almost all of the refinement runs were carried out to test

the correctness of the algorithm and estimate the CPU time

for one cycle of refinement. Obviously, unrestrained refine-

ment results should be taken with great caution even at high

resolution. For this reason we did not make any attempts to

analyze stereochemistry and/or the quality of the resulting

models.

For all refinements a five-Gaussian approximation for

atomic form factors has been used. During the refinement runs

positional and thermal parameters of all atoms have been

varied (except for the model of �-galactosidase, where only

positional parameters were varied).

Table 1 contains basic crystallographic data for the four

structures participating in the numerical tests (�-galactosidase

refinement will be discussed below). Five cycles of full-matrix

refinement have been carried out for each structure. The

detailed CPU time statistics for these runs are highlighted in

Table 2. The CPU times are approximately proportional to the

size of the structure. The CPU time for the calculation of

various preconditioners depends linearly on the number of

symmetry operators.

The effectiveness of diagonal preconditioners was tested for

the lysozyme structure. When the diagonal preconditioner was

removed from the calculations by setting all its elements to

unity, the number of iterations increased almost tenfold and

varied from 2009 to 5296 (and thus was comparable to the

number of refinable parameters). The average CPU time

exceeded 4 h per cycle. This shows that inclusion of (at least) a

simple diagonal preconditioner is a must for speedy calcula-

tions.

A few percent drop in R values was observed for all

structures. However, because of the unrestrained nature of

these refinements these numbers are not very meaningful

(except for the refinement of the small �-conotoxin structure

where the R value dropped to 0.148).

research papers

608 Boris V. Strokopytov � Novel full-matrix technique Acta Cryst. (2008). A64, 601–612

Table 1
Basic crystallographic data for four structures.

Protein
Resolution
(Å)

No. of
reflections

No. of
atoms

Space
group R value†

�-Conotoxin PnIB 1.1 4358 136 P212121 0.169
Egg white lysozyme 1.14 31283 1199 P1 0.165
RNase A 1.58 20848 1094 P3221 0.212
Laccase 1.2 160473 4638 P212121 0.213

† Starting values as given by FMLSQ.

4.2. b-Galactosidase as an ultimate CPU time test

As an ultimate test it was decided to run a few cycles of full-

matrix xyz refinement on the structure of �-galactosidase.

�-Galactosidase is a very large protein. It consists of 132 654

non-H atoms. The number of refinable parameters is 397 961.

The data set for this protein contained 530 130 unique

reflections in space group P21 at 2.5 Å resolution. Technically,

it would be impossible to calculate or get access

to all 1:52� 1011 normal matrix elements on ordinary

computers.

One cycle of the refinement on average took 11 d. Five

cycles of full-matrix refinement using a diagonal precondi-

tioner required about 56 d of CPU time. Calculation of the

diagonal preconditioner took just 2.7 h of CPU time for each

cycle of refinement. During five cycles of the refinement, 5121

iterations were made to solve five systems of normal equa-

tions. One matrix–vector product evaluation costs approxi-

mately 15–16 min in terms of CPU time for this protein

structure. Interestingly, if the normal matrix elements were

explicitly available the matrix–vector product evaluation (in

double precision) would take about the same amount of time

(
13 min).

During the course of the refinement the R value dropped

from 0.195 to 0.140. The maximal xyz shift was about 3.8 Å.

This clearly suggests that the normal matrix was ill-

conditioned at 2.5 Å resolution and stresses the need for the

introduction of tight restraints (Ten Eyck, 1999).

In order to estimate the effect of preconditioning one cycle

of refinement was rerun with a block-diagonal preconditioner.

One block of the preconditioner included all atoms belonging

to the same residue. In total 10 273 327 matrix elements have

been calculated using the method described by Tronrud

(1999). This calculation consumed about 16 h of CPU time.

However, only 469 iterations were required (versus 1318 for

the first cycle in the previous example) to solve the normal

equations. One cycle of the refinement took 140 h (5.8 d),

which compares favorably with the CPU time for the first cycle

of refinement when a simple diagonal preconditioner was used

(15 d of CPU time).

This example clearly shows that a suitable choice of

preconditioner may have a rather dramatic effect on the CPU

time required to carry out one cycle of full-matrix least-

squares refinement. Though the CPU times mentioned above

may seem excessive, we should not forget about the size of this

structure. We also hope that inclusion of stereochemical

restraints with appropriate weights according to equation (62)

and other algorithmic improvements will condition the normal

matrix and further reduce the number of required iterations to

solve the normal equations. Obviously, for full-matrix refine-

ment of such a structure some kind of parallelism is needed.

Memory requirements were high but reasonable for a

protein of such a size. Storage of all necessary arrays including

three electron-density maps (in double precision) required

around 1.1 GB of physical memory.

5. Conclusion

We believe that the matrix–vector product algorithm

described above will make full-matrix least-squares refine-

ment feasible for most macromolecular structures on a daily

basis owing to its ability to avoid explicit calculation and

storage of the normal matrix. CPU time requirements are

reasonable for most protein structures. Since nowadays most

computers have physical memory of 1 GB or more, handling

several electron-density maps in computer memory should not

cause difficulties and does not require special equipment.

There is almost no doubt that the approach described above

could be extended to calculation of the normal matrix–vector

product in the case of anisotropic refinement. However,

technically the derivation will be more complicated since 100

sets of coefficients must be considered and summed.

While error analysis for smaller proteins should not cause

any difficulties, it is still too soon to judge how useful this

method will be for estimating the accuracy of large protein

structures (more than, say, 20 000 atoms in the asymmetric

part of the unit cell), since calculation of the diagonal elements

of the normal matrix inverse remains expensive in terms of

CPU time. The simplest and rather obvious recommendation

is to calculate s.u. values for a limited set of user-selected

atoms or residues on ordinary computers using iterative

methods. Better computer equipment (including powerful

modern servers with many CPUs) may help to calculate s.u.

values for all atoms for large proteins. Inversion of very large

matrices is a hot topic of modern applied linear algebra which

needs further active research.

APPENDIX A
Comment on non-P1 space groups

The matrix–vector product expressions can be obtained for

any desired space group by application of the chain rule

(Urzhumtsev & Lunin, 2001). When applying the chain rule to

the matrix–vector product one deals with linear symmetry

Acta Cryst. (2008). A64, 601–612 Boris V. Strokopytov � Novel full-matrix technique 609

research papers

Table 2
Full-matrix refinement using a diagonal preconditioner.

Protein
No. of
parameters

Iterations
per cycle
(min–max)

CPU time for one
matrix–vector product
calculation (s)

Average CPU time
per cycle (min)

CPU time for
preconditioner
calculations (s)

�-Conotoxin PnIB 544 18–21 1.5 1.2 34
Egg white lysozyme 4793 71–103 13.2 23 165
RNase A 4376 54–149 12.1 26 542
Laccase 18552 57–181 56.6 140 2737

operators, which allow certain simplifications, and the final

result boils down to

½H�p�true
x

½H�p�true
y

½H�p�true
z

0
B@

1
CA ¼XNsym

m¼1

AT
m

½H�p�P1
xm

½H�p�P1
ym

½H�p�P1
zm

0
B@

1
CA; ð63Þ

where AT
m is the transposed matrix part of the mth symmetry

operator for the true space group. This means the matrix–

vector product behaves with respect to symmetry like a

gradient of the minimized function f ðpÞ. Transformation of

½H�p�B and ½H�p�O is easy, i.e. ½H�p�true
B ¼

P
m½H�p�P1

Bm.

In an orthogonal system of coordinates a set of useful

identities,

½OAD�T ¼ ½OAD��1
¼ D�1A�1O�1

¼ OA�1D; ð64Þ

might be used to transform the rotational part A of the

symmetry operator. O is the orthogonalization matrix, D is the

deorthogonalization matrix, OD ¼ I and ½OAD� is a unitary

three-by-three matrix.

Equation (63) is applicable in both real and reciprocal space

after appropriate expansions.

APPENDIX B
Other possibilities to derive the matrix–vector product

Let us consider expression (45) again:P
s

OigiðsÞ4�
2h2wðsÞExðsÞ expð�2�isriÞ: ð65Þ

The convolution theorem can be applied to this expression in

such a way that

�xxðrÞ ¼
P

s

wðsÞExðsÞ expð�2�isrÞ ð66Þ

may be convoluted with the Fourier transform of

4�2h2OigiðsÞ expð2�isriÞ. Using an orthogonal system of coor-

dinates we obtain then

F
�1 4�2H2

oOi giðsÞ expð2�isriÞ
� �

¼ Oi

Xngauss

l

al

4�

Biso
i þ bl

� �3=2

�
4�2

Biso
i þ bl

� �
2�

4�2

Biso
i þ bl

4�x2
i

� �
exp

�
�

4�2r2

Biso
i þ bl

�
:

ð67Þ

�x2
i þ�y2

i þ�z2
i ¼ r2. �x2

i is the squared distance between

the map grid point and the atom center along the x axis. This

expression is equivalent to a part of equation (11), which was

given by Tronrud (1999) in the compressed form for nine

terms at once. Note that in our case the double summation is

no longer needed and the metric tensor G ¼ I for any

orthogonal coordinate frame. One can find all necessary

expressions for this approach in the paper mentioned

above.

Using this technique and consulting equations (25)–(29),

it is clear that the following five maps have to be

calculated:

�xðrÞ ¼
P

s

wðsÞExðsÞ expð�2�isrÞ; ð68Þ

�yðrÞ ¼
P

s

wðsÞEyðsÞ expð�2�isrÞ; ð69Þ

�zðrÞ ¼
P

s

wðsÞEzðsÞ expð�2�isrÞ; ð70Þ

�BðrÞ ¼
P

s

wðsÞEBðsÞ expð�2�isrÞ; ð71Þ

�OðrÞ ¼
P

s

wðsÞEOðsÞ expð�2�isrÞ: ð72Þ

However, the convolution step becomes cumbersome, e.g.

½H�p�5ði�1Þþ1

¼ F
�1
�
4�2H2

oOi giðsÞ expð2�isriÞ
�
� �xðrÞ

þ F
�1
�
4�2Ho KoOi giðsÞ expð2�isriÞ

�
� �yðrÞ

þ F
�1
�
4�2Ho LoOi giðsÞ expð2�isriÞ

�
� �zðrÞ

þ F
�1
�
�iHoðs

2=2ÞOi giðsÞ expð2�isriÞ
�
� �BðrÞ

� F
�1
�
2�iHoOi giðsÞ expð2�isriÞ

�
� �OðrÞ: ð73Þ

The expressions for the other rows can be derived in a similar

fashion using equations (26)–(29).

Though this approach has been implemented in FMLSQ,

we found it less numerically accurate than the approach

described in the main body of the paper.8 It is also 1.2–1.3

times slower than the approach defined by equations (48)–

(52).

APPENDIX C
Bilinear forms and other normal matrix–vector
products via FFT

The product uTHq can be calculated simply as the inner (dot)

product hu; Hqi since the matrix–vector product algorithm is

assumed to be known. However, brief investigation of other

possibilities for calculation of the bilinear product uTHq using

FFT might be useful. The bilinear form may be rewritten as

uTHq ¼
PN
i¼1

u5ði�1Þþ1½Hq�5ði�1Þþ1 þ
PN
i¼1

u5ði�1Þþ2½Hq�5ði�1Þþ2

þ
PN
i¼1

u5ði�1Þþ3½Hq�5ði�1Þþ3 þ
PN
i¼1

u5ði�1Þþ4½Hq�5ði�1Þþ4

þ
PN
i¼1

u5i½Hq�5i: ð74Þ

research papers

610 Boris V. Strokopytov � Novel full-matrix technique Acta Cryst. (2008). A64, 601–612

8 One possible explanation of this observation is the following. The second
approach described here is, in fact, equivalent to convolution of second
derivatives of atomic densities with the electron-density maps (Murshudov et
al., 1997). However, in this case instead of joint atoms with large integration
radii we end up with single atom images, and this alone may lead to some loss
of precision.

To get an idea of how the final result looks it is enough to

consider the first sum in equation (74):

uT
5ði�1Þþ1Hq

¼
P

s

4�2h2wðsÞExðsÞ
PN
i¼1

ux
5ði�1Þþ1Oi giðsÞ expð�2�isriÞ

þ
P

s

4�2hkwðsÞEyðsÞ
PN
i¼1

ux
5ði�1Þþ1Oi giðsÞ expð�2�isriÞ

þ
P

s

4�2hlwðsÞEzðsÞ
PN
i¼1

ux
5ði�1Þþ1Oi giðsÞ expð�2�isriÞ

þ
P

s

�ihðs2=2ÞwðsÞEBðsÞ
PN
i¼1

ux
5ði�1Þþ1Oi giðsÞ expð�2�isriÞ

�
P

s

2�ihwðsÞEOðsÞ
PN
i¼1

ux
5ði�1Þþ1Oi giðsÞ expð�2�isriÞ: ð75Þ

Dividing now vector umod into the following five components,

umod ¼

ux
5ði�1Þþ1Oi

u
y
5ði�1Þþ2Oi

uz
5ði�1Þþ3Oi i ¼ 1; 2; . . . ;N

uB
5ði�1Þþ4Oi

uO
5i

8>>>>>><
>>>>>>:

ð76Þ

and setting

PN
i¼1

ux
5ði�1Þþ1OigiðsÞ expð�2�isriÞ ¼ Fux�

c ðsÞ; ð77Þ

PN
i¼1

u
y
5ði�1Þþ2OigiðsÞ expð�2�isriÞ ¼ Fuy�

c ðsÞ; ð78Þ

PN
i¼1

uz
5ði�1Þþ3OigiðsÞ expð�2�isriÞ ¼ Fuz�

c ðsÞ; ð79Þ

PN
i¼1

uB
5ði�1Þþ4OigiðsÞ expð�2�isriÞ ¼ FuB�

c ðsÞ; ð80Þ

PN
i¼1

uO
5igiðsÞ expð�2�isriÞ ¼ FuO�

c ðsÞ; ð81Þ

we are ready to write out the final result for the P1 space

group:

uTHq ¼
P

s

4�2h2wðsÞFux�
c ðsÞE

xðsÞ þ
P

s

4�2hkwðsÞFux�
c ðsÞE

yðsÞ

þ
P

s

4�2hlwðsÞFux�
c ðsÞE

zðsÞ þ
P

s

�ihðs2=2ÞwðsÞFux�
c ðsÞE

BðsÞ

�
P

s

2�ihwðsÞFux�
c ðsÞE

OðsÞ þ
P

s

4�2hkwðsÞFuy�
c ðsÞE

xðsÞ

þ
P

s

4�2k2wðsÞFuy�
c ðsÞE

yðsÞ þ
P

s

4�2klwðsÞFuy�
c ðsÞE

zðsÞ

þ
P

s

�ikðs2=2ÞwðsÞFuy�
c ðsÞE

BðsÞ �
P

s

2�ikwðsÞFuy�
c ðsÞE

OðsÞ

þ
P

s

4�2hlwðsÞFuz�
c ðsÞE

xðsÞ þ
P

s

4�2klwðsÞFuz�
c ðsÞE

yðsÞ

þ
P

s

4�2l2wðsÞFuz�
c ðsÞE

zðsÞ þ
P

s

�ilðs2=2ÞwðsÞFuz�
c ðsÞE

BðsÞ

�
P

s

2�ilwðsÞFuz�
c ðsÞE

OðsÞ �
P

s

�ihðs2=2ÞwðsÞFuB�
c ðsÞE

xðsÞ

�
P

s

�ikðs2=2ÞwðsÞFuB�
c ðsÞE

yðsÞ

�
P

s

�ilðs2=2ÞwðsÞFuB�
c ðsÞE

zðsÞ þ
P

s

ðs4=16ÞwðsÞFuB�
c ðsÞE

BðsÞ

�
P

s

ðs2=4ÞwðsÞFuB�
c ðsÞE

OðsÞ þ
P

s

2�ihwðsÞFuO�
c ðsÞE

xðsÞ

þ
P

s

2�ikwðsÞFuO�
c ðsÞE

yðsÞ þ
P

s

2�ilwðsÞFuO�
c ðsÞE

zðsÞ

�
P

s

ðs2=4ÞwðsÞFuO�
c ðsÞE

BðsÞ þ
P

s

wðsÞFuO�
c ðsÞE

OðsÞ: ð82Þ

Thus after generation of appropriate Fc values the whole

calculation can be carried out in reciprocal space. Convolution

in real space is not really needed. Clearly, on the basis of

equation (82) we can calculate the quadratic form qTHq which

might be required for certain applications.

Using the matrix–vector product alone it is also easy to

calculate various other quantities: H2q ¼ HðHqÞ, qTHq ¼

hq;Hqi, qTH2q ¼ hq;HðHqÞi etc. However, quadratic forms

like qTH�1q may require solution of the linear system Hx ¼ q.

APPENDIX D
Preconditioners

Solution of very large linear systems of equations is not easy.

The rate of convergence of the iterative method depends on

the eigenvalue spectrum of the 5N-by-5N H matrix. Without

preconditioning it usually takes about n ¼ 5N iterations to

solve the system of equations

Hx ¼ g: ð83Þ

Therefore, any iterative method usually involves another

matrix Q, which transforms matrix H into one with a more

favorable spectrum. This transformation matrix Q is known as

the ‘preconditioner’.

In general, several preconditioning schemes are available:

Q�1Hx ¼ Q�1g ðleft preconditioningÞ ð84Þ

or

ðHQ�1
ÞQx ¼ g ðright preconditioningÞ ð85Þ

or

Acta Cryst. (2008). A64, 601–612 Boris V. Strokopytov � Novel full-matrix technique 611

research papers

Q�1
L HQ�1

R ðQRxÞ ¼ Q�1
L g ðtwo-sided preconditioningÞ;

ð86Þ

where Q ¼ QLQR. To be able to reduce the number of

iterations, one must try to get Q as close as possible to H. In

this case eigenvalues of Q�1H are closer to 1 in magnitude and

thus any iterative method using this matrix as a basis for its

iterative step will have much better convergence. The choice

of preconditioning scheme depends on the particular algo-

rithm.

Diagonal preconditioners and to some extent general

preconditioners have been reviewed in some detail by Cowtan

& Ten Eyck (2000) and we refer the reader to this useful

paper.

Since diagonal and arbitrary off-diagonal matrix elements

are not easily accessible, the method developed by Tronrud

(1999) is actively used in the FMLSQ program for calculation

of various preconditioners. Note that calculation of a good

(e.g. block-diagonal) preconditioner may require significant

CPU time. The major goal is to find such a preconditioner that

the overall time for one cycle of refinement is close to minimal.

We are indebted to Dr Kostya Polyakov and Dr Tatyana

Safonova for carefully reading the manuscript and useful

suggestions. Special thanks are due to the group developing

the LyX editor (http://www.lyx.org), whose work greatly

simplified the writing and processing of this article. This work

was supported by the Russian Federation State grant No.

02.513.11.3388 within the program ‘Research and develop-

ment along the priority directions for scientifico-technological

complex of Russia in 2007–2012’.

References

Agarwal, R. C. (1978). Acta Cryst. A34, 791–809.
Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J.,

Dongarra, J., Du Croz, J., Greenbaum, A., Hammarling, S.,

McKenney, A. & Sorensen, D. (1999). LAPACK, Users’ Guide,
3rd ed. Philadelphia: Society for Industrial and Applied Mathe-
matics.

Berman, H. M. et al. (2002). Acta Cryst. D58, 899–907.
Brünger, A. T., Adams, P. D., Clore, G. M., DeLano, W. L., Gros, P.,

Grosse-Kunstleve, R. W., Jiang, J.-S., Kuszewski, J., Nilges, M.,
Pannu, N. S., Read, R. J., Rice, L. M., Simonson, T. & Warren, G. L.
(1998). Acta Cryst. D54, 905–921.

Collaborative Computational Project, Number 4 (1994). Acta Cryst.
D50, 760–763.

Cowtan, K. & Ten Eyck, L. F. (2000). Acta Cryst. D56, 842–856.
Frigo, M. & Johnson, S. G. (2005). Proc. IEEE, 93, 216–231.
Hendrickson, W. A. & Konnert, J. H. (1980). Computing in

Crystallography, edited by R. Diamond, S. Ramseshan & K.
Venkatesan, pp. 13.01–13.26. Bangalore: Indian Academy of
Sciences.

Hestenes, M. R. & Stiefel, E. (1952). J. Res. Natl Bur. Stand. 49, 409–
436.

Johnson, S. G. & Frigo, M. (2007). IEEE Trans. Signal Proc. 55, 111–
119.

Kim, K. M., Nesterov, Yu. E. & Cherkassky, B. V. (1984). Dokl. Acad.
Nauk SSSR, 275, 1306–1309.

Lanczos, C. (1952). J. Res. Natl Bur. Stand. 49, 33–53.
Lifchitz, A. (1986). Acta Cryst. A42, 204.
Lunin, V. Yu. & Urzhumtsev, A. G. (1985). Acta Cryst. A41, 327–333.
Murshudov, G. N., Vagin, A. A. & Dodson, E. J. (1997). Acta Cryst.

D53, 240–255.
Navaza, J. (2002). Acta Cryst. A58, 568–573.
Paige, C. C. & Saunders, M. A. (1975). SIAM J. Numer. Anal. 12, 617–

629.
Polyakov, K. M. (2008). Unpublished work.
Press, W. H., Flannery, B. P., Teukolsky, S. A. & Vetterling, W. T.

(1992). Numerical Recipes in FORTRAN 77: The Art of Scientific
Computing, 2nd ed. Cambridge University Press.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
Ten Eyck, L. F. (1999). Crystallographic Computing 7, edited by P. E.

Bourne & K. Watenpaugh. Oxford University Press.
Ten Eyck, L. F. (2003). Methods Enzymol. 374, 345–369.
Tronrud, D. E. (1997). Methods Enzymol. B, 277, 306–319.
Tronrud, D. E. (1999). Acta Cryst. A55, 700–703.
Urzhumtsev, A. G. & Lunin, V. Y. (2001). Acta Cryst. A57, 451–

460.

research papers

612 Boris V. Strokopytov � Novel full-matrix technique Acta Cryst. (2008). A64, 601–612

